Plots Two Main Components of Principal Component Analysis
pcaTCGA(x, group.names, title = "", return.pca = FALSE, scale = TRUE, center = TRUE, var.scale = 1, obs.scale = 1, ellipse = TRUE, circle = TRUE, var.axes = FALSE, alpha = 0.8, add.lines = TRUE, ...)
data.frame
or matrix
containing i.e. expressions information. See expressionsTCGA.ggbiplot
.ggbiplot
.ggbiplot
.ggbiplot
.ggbiplot
.ggbiplot
.If return.pca = TRUE
then a list containing a PCA plot (of class ggplot
) and a pca
model, the result of prcomp function.
If not, then only PCA plot is returned.
This function is based on https://github.com/vqv/ggbiplot
which had to be copied to RTCGA because Bioconductor
does not support
remote dependencies from GitHub
.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
RTCGA website http://rtcga.github.io/RTCGA/articles/Visualizations.html.
Other RTCGA: RTCGA-package
,
boxplotTCGA
, checkTCGA
,
convertTCGA
, createTCGA
,
datasetsTCGA
, downloadTCGA
,
expressionsTCGA
, heatmapTCGA
,
infoTCGA
, installTCGA
,
kmTCGA
, mutationsTCGA
,
readTCGA
, survivalTCGA
,
theme_RTCGA
## Not run: ------------------------------------ # library(dplyr) # ## RNASeq expressions # library(RTCGA.rnaseq) # expressionsTCGA(BRCA.rnaseq, OV.rnaseq, HNSC.rnaseq) %>% # rename(cohort = dataset) %>% # filter(substr(bcr_patient_barcode, 14, 15) == "01") -> BRCA.OV.HNSC.rnaseq.cancer # # pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort") # pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort", add.lines = FALSE) # pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort", return.pca = TRUE) -> pca.rnaseq # pca.rnaseq$plot # pca.rnaseq$pca ## ---------------------------------------------