Plots Two Main Components of Principal Component Analysis
pcaTCGA(x, group.names, title = "", return.pca = FALSE, scale = TRUE, center = TRUE, var.scale = 1, obs.scale = 1, ellipse = TRUE, circle = TRUE, var.axes = FALSE, alpha = 0.8, add.lines = TRUE, ...)
data.frame or matrix containing i.e. expressions information. See expressionsTCGA.ggbiplot.ggbiplot.ggbiplot.ggbiplot.ggbiplot.ggbiplot.If return.pca = TRUE then a list containing a PCA plot (of class ggplot) and a pca model, the result of prcomp function.
If not, then only PCA plot is returned.
This function is based on https://github.com/vqv/ggbiplot 
which had to be copied to RTCGA because Bioconductor does not support 
remote dependencies from GitHub.
If you have any problems, issues or think that something is missing or is not clear please post an issue on https://github.com/RTCGA/RTCGA/issues.
RTCGA website http://rtcga.github.io/RTCGA/articles/Visualizations.html.
Other RTCGA: RTCGA-package,
  boxplotTCGA, checkTCGA,
  convertTCGA, createTCGA,
  datasetsTCGA, downloadTCGA,
  expressionsTCGA, heatmapTCGA,
  infoTCGA, installTCGA,
  kmTCGA, mutationsTCGA,
  readTCGA, survivalTCGA,
  theme_RTCGA
## Not run: ------------------------------------ # library(dplyr) # ## RNASeq expressions # library(RTCGA.rnaseq) # expressionsTCGA(BRCA.rnaseq, OV.rnaseq, HNSC.rnaseq) %>% # rename(cohort = dataset) %>% # filter(substr(bcr_patient_barcode, 14, 15) == "01") -> BRCA.OV.HNSC.rnaseq.cancer # # pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort") # pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort", add.lines = FALSE) # pcaTCGA(BRCA.OV.HNSC.rnaseq.cancer, "cohort", return.pca = TRUE) -> pca.rnaseq # pca.rnaseq$plot # pca.rnaseq$pca ## ---------------------------------------------